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Summary. The total energy pseudopotential method is well suited to parallel 
processing. This paper discusses a procedure for calculating the valence elec- 
tronic wavefunction in a given ionic configuration, and considers the exploitation 
of parallel processing using a data parallel approach. The implementation of this 
procedure on two message passing i860 based machines, containing up to 64 
nodes, is described, and the prospects for massively parallel execution are 
examined. 
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1. Introduction 

The UK CP Grand Challenge Programme is a collaborative venture, involving 
groups at five universities. The objectives are the development and exploitation 
of parallel computing in Car-Parrinello [1] methods for the computer simulation 
of systems in chemistry, physics and materials science. Three important compo- 
nents of this project are (a) a range of scientific projects, (b) acquisition of 
parallel hardware, and (e) development of parallel software. We now briefly 
describe each of these components. 

The projects are wide ranging, including studies of the behaviour of dissolved 
hydrogen in metals, surface structure and surface chemistry, simulation of 
molecular beam epitaxy growth, silicates at pressures and temperatures corre- 
sponding to the earth mantle, and fluids and clusters of metallic elements. Each 
of these projects are of current interest and demand exceptional computing 
power. 

The programme has acquired a 25% share of a dedicated "Grand Challenge" 
machine, in collaboration with a similar Grand Challenge Programme and The 
University of Edinburgh, located at Edinburgh University. This is a message 
passing MIMD machine consisting of 64 nodes, each of which comprises an Intel 
i860 application processor, 16 Mbyte of application memory, and two Inmos 
T800 processors. The two transputers provide message routing between arbitrary 
pairs of nodes, and access to the host operating system. The peak performance 
of the i860 application process is 80 Mflops, so that the peak performance of this 
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machine is notionally 5 Gflops. In fact, as is widely known, it is not practical to 
obtain this kind of performance from the i860. Hand coded computational kernels 
which achieve ~ 30 Mftops are known, and it would be more conservative to rate 
the machine as having a performance of around 2 Gflops. Each of the transputers 
provides up to four serial Inmos links, which can be connected to the links of other 
nodes in almost any fashion, providing a notional peak communication band- 
width of 16 MBs at each node. Again, it is not practical to realise this perfor- 
mance, in this case due to the capabilities of the memory system and the fact that 
message routing is performed in software on the transputers. 

The software effort is primarily directed at producing code which is able to 
efficiently exploit this machine, although we have also ported the parallel program 
to the Intel iPSC/860. Over the past few years, the various groups involved in the 
collaboration have independently developed three programs, for vector proces- 
sors, which implement CP-type algorithms. These groups have been able to 
perform some major simulations, and some of this work has been published 
[2, 5, 7]. These programs differ, reflecting the differing scientific interests of the 
authors, but they have a common core which has been implemented in similar 
ways, and they each contain of order 10 000 lines of FORTRAN. A core program 
was derived from the program written by Mike Payne et al., to which individual 
groups may contribute procedures as required for specific projects. A key objective 
in the development of the first version of this parallel program was the retention 
of the overall structure of the original program, and the re-use of as much serial 
code as possible. In fact it turned out that in about 10 000 lines of serial Fortran, 
only about 600 lines of the application needed to be modified. 

In this paper we shall concentrate on the core program, the concurrency 
therein, the parallelism which we were able to exploit on the machines described 
above, and the prospects for exploitation of massively parallel machines. Section 
2 briefly describes the total energy pseudopotential method as implemented in this 
program, and in Sect. 3 we discuss the parallel computation. 

2. Description of methods 

The total energy pseudopotential method is well described in the literature, see for 
example [3, 6]. In this section we shall only briefly discuss the fundamental 
features, The core of the computation consists of calculating the valence wave- 
function for a given ionic configuration, using a conjugate gradients technique. 
We shall describe this technique in more detail, since it consumes practically all 
of the run time in real calculations and is the basis for our discussion of parallelism 
in the next section. 

2.1. Fundamentals  

Bloch's theorem states that in a periodic system, each electronic wavefunction can 
be written as the product of a cell periodic part and a wavelike part. The cell 
periodic part can be expanded using a basis set consisting of discrete plane waves 
whose wave vectors are reciprocal lattice vectors. Therefore, each electronic 
wavefunction can be written as a sum of plane waves 

4)ik(r) = ~ el,k+ ~e i(k + a~.r 
G 
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We have changed the problem of calculating an infinite number of electrons 
to one of calculating a finite number of electronic wavefunctions at an 
infinite number of k-points. Methods have been devised for calculating very 
accurate approximations to the electronic potential from a filled band by 
considering the electronic states at special, small, sets of k-points in the Brillouin 
zone. 

The plane wave basis set required to expand the electronic wavefunctions is 
also infinite. The plane wave basis set in total energy pseudopotential calcula- 
tions is truncated by including only those waves whose kinetic energy is less than 
some chosen cut-off energy. Of course, this truncation leads to an error in the 
computed total energy. We can, in principle, control this error by performing 
calculations at increasing cut-off energy, until the calculated total energy has 
converged. 

The wavefunctions of nuclei have negligible overlap in almost all materials. 
One notable exception is helium, which is a quantum liquid at low temperature. 
In general, however, we can say that the nuclei are indistinguishable and classical 
mechanics can be applied to them. We therefore treat the nuclei classically. The 
electrons, conversely, do have significant overlap, and we must treat them 
quantum mechanically. The potential field of the nuclei is handled as an external 
field acting on the electronic system. 

It is extremely expensive to perform all electron calculations. Expanding the 
wavefunctions in a plane wave basis set, an extremely large number of plane 
waves are required in order to describe the core orbitals and follow the rapid 
oscillations of the valence electrons in the core region. It is well known that most 
physical properties of solids are dependent on the valence electrons to a far 
greater degree than the core electrons. The frozen core approximation treats the 
nucleus and core electrons as a single entity, replacing the nuclear potential by a 
pseudopotential, and the valence electron wavefunctions by pseudo-wavefunc- 
tions. 

The pseudopotential is chosen such that the pseudo-wavefunctions and the 
actual valence electron wavefunctions are identical outside some core region, and 
within the core region the pseudo-wavefunctions contain no radial nodes. This 
vastly reduces the number of plane waves needed to describe the pseudo-wave- 
functions compared to the actual valence wavefunctions. The form of the 
pseudopotentiai is not unique, and the core program represents the non-local, 
angular momentum dependent, pseudopotential in the form due to Kleinman 
and Bylander [4]. 

The Hohenberg-Kohn-Sham theorem states that (a) the ground state 
energy of a many particle system in an external field is a unique functional of the 
density, and (b) the ground state electron density is the one which minimises the 
total energy. The total ground state energy of a system can be written in terms 
of the ground state wavefunctions q~: 

E,o, = I H t o ,  = T +  Ui_ i .Jr_ Ue.i .J[_ UH_JC U x  C 

where T is the kinetic energy, Ui_i is the ion-ion coulomb energy, Ue_i is the 
electron-ion energy through the pseudopotential, U~ is the Hartree energy and 
Uxc is the exchange-correlation energy. 

Due to the conservation of charge and the stationary property of the total 
energy, one obtains the Kohn Sham equations for a single particle: 
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where H is the Kohn-Sham hamiltonian: 

H = V 2 -~- Vio n --~ V H At- V x c  

V~o,, is the potential acting on the electron due to the presence of the ions, Vu is 
the Hartree potential and Vxc is the exchange-correlation potential. 

The exchange-correlation potential is unknown. The simplest method of 
describing this term is to utilise the local density approximation, and this is 
almost universally employed in total energy pseudopotential calculations. This 
approximation constructs Vxc at some point by assuming that it is the same as 
that in a uniform electron gas of the same density. This is the only uncontrolled 
approximation in the ab initio total energy pseudopotential method. 

2.2. Solution of the Kohn-Sham equations 

Self-consistent solutions to the Kohn-Sham equations can be found using 
conventional matrix diagonalisation techniques, however this is a computation- 
ally expensive procedure and severely limits the sizes of systems which can be 
studied. 

Car and Parrinello had the insight to consider treating the plane wave 
coefficients in the expansion of the wavefunction as dynamical variables in a 
classical molecular dynamics approach. In the usual partially constrained equa- 
tions of motion the wavefunction is subjected to an acceleration ( H -  2i)~bi, 
where 2i = (~b,[Hl~b;). 

After calculation of these accelerations, the equations of motion are inte- 
grated for some timestep At, using a finite difference method such as the Verlet 
algorithm. The wavefunctions are then no longer orthogonal, and must be 
orthogonalised to one another. The electronic potentials, Hartree and exchange, 
are then recalculated, and the Kohn-Sham hamiltonian is updated. 

Two factors lead to the molecular dynamics method being computationally 
more efficient than matrix diagonalisation. In the first place, it is possible to 
divide the calculation of the acceleration into two parts, one of which is diagonal 
in real space and the other diagonal in reciprocal space. Thus the time taken to 
compute the acceleration is dominated by the need to perform fourier transforms 
between real and reciprocal space, and vice versa. In the second place, the 
processes of calculating the eigenstates of the Kohn-Sham hamiltonian and 
obtaining self-consistency are performed simultaneously in the molecular dynam- 
ics method. 

2.3. Minimisation of the Kohn Sham functional 

One problem with the molecular dynamics method is that the size of the timestep 
A t must be decreased with the size of the system being studied, in order to ensure 
stable evolution of the Kohn-Sham hamiltonian. This problem can be circum- 
vented by utilising a direct search for the minimum of the Kohn-Sham energy 
functional. 

Teter, Payne, Allan and Joannopoulos [6] have described a conjugate gradi- 
ents method for directly locating the minimum of the Kohn-Sham functional, 
which allows extremely fast total energy pseudopotential calculations to be 
performed. 
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In this method the constrained conjugate gradient iteration described below 
is applied to single bonds. One can apply this procedure to the first band until 
some cOnvergence criteria are met, then to the second, third etc. The whole 
process is repeated with increasingly stringent convergence criteria until satisfac- 
tory overall convergence is obtained. 

In the first instance the steepest descent vector ~ for iteration m of band i 
is calculated. This is essentially the same as the calculation of  the acceleration in 
the molecular dynamics method briefly discussed above. The constraint of 
orthogonality of bands must be  observed, and the steepest descent vector is 
orthogonalised to all other bands: 

i :~ j  

The K o h n - S h a m  hamiltonian has a broad eigenvalue spectrum, and the conver- 
gence of  the conjugate gradients algorithm is improved by use of a diagonal 
preconditioning matrix, K, which is essentially the inverse of the kinetic energy 
operator. 

The preconditioned steepest descent vector/3 m is then obtained: 

tim : K~;m 

and is again orthogonalised to all bands: 

i~j 

The conjugate direction 7m, in the presence of preconditioning, for the mth 
iteration can now be calculated by: 

where 

rt7 = (/~;ml~;") 

and 

~ =0 

A further orthogonalisation to the present band is now formed and a normalised 
conjugate direction 7~ m calculated. This is then used in order to determine the 
energy minimum and update the wavefunction. The combination: 

~bm+ 1 = ~b m cos 0 + 7~" sin 0 

is a normal vector which is orthogonal to all bands j ¢ i. Any vector of  this form 
satisfies the constraints of orthonomality for the electronic wavefunctions. 

We require the value of 0 which minimises the K o h n - S h a m  functional. This 
is estimated by considering a first order expansion of  the energy in 0: 

E(O) ~ Eo + E~ cos 20 + E~ sin 20 

We can evaluate the unknowns in this expression with three pieces of informa- 
tion. E(0) is already known, and since H l~b ~ ) has been calculated to determine 
the steepest descents vector, we can calculate 8E/80 at 0 = 0 quite easily. Finally, 
we can calculate the energy at some other value of 0, close to zero, in order to 
obtain the three unknowns and the "best" value of 0 to use in computing the 
new wavefunction. 
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3. Exploitation of parallel computing 

When we consider extracting parallelism from existing algorithms, and codes, 
then it is often useful to examine the complexity of the problem. We therefore 
begin by introducing a little notation with which to describe these calculations. 

Let A be the number of atoms in the system under question. The number of 
electronic bands B, is roughly equivalent to A, depending on the valency of the 
particular atoms, and the number of plane wave coefficients C used to describe 
a particular wavefunction is usually about 100B. 

In order to calculate the steepest descents vector, and the step length 0 we 
must transform quantities, such as the charge density, between real and recipro- 
cal spaces. This is most quickly achieved using a three dimensional fast fourier 
transform algorithm. In order to use this algorithm we must enclose the plane 
wave energy cut-off surface, in reciprocal space, in a rectangular box. 

The FFT box must be large enough that the cut-off surface is surrounded by 
surfficient vacuum to prevent any significant interaction between the identical 
copies of the system introduced by the fourier transform. The number of mesh 
points within this box, D, is generally about 10C. 

3.1. Complexity 

The storage requirement of the total energy pseudopotential method described 
above is dominated by the electronic wavefunction, and increases as BC. In other 
words, the storage increases as A2. The FFT mesh requires storage proportional 
to D, in turn proportional to A, and should not be ignored as the prefactor is 
rather large. The computational cost of performing a single conjugate gradients 
iteration on a single band is dominated by the cost of fourier transforms and 
orthogonalisations. We shall ignore the cost of all other operations which scale 

n o  worse than B or C. 
The cost of calculating the steepest descent vector is dominated by the 

requirement to perform two fourier transforms, each of which takes C(D log D) 
operations. In order to calculate the Kohn-Sham energy at the trial value of 0, 
the trial wavefunction must be transformed into real space so that the charge 
density can be computed, and then the charge density must be transformed into 
reciprocal space in order to calculate the Hartree energy. Calculation on the 
energy after updating the wavefunction requires a further two fourier transforms. 
Thus six fourier transforms are required in all. 

The steepest descent vector is orthogonalised to all bands, at a cost of (9(BC) 
operations. After preconditioning, the steepest descent vector is again orthogo- 
nalised to all other bands. The orthogonalisation of the conjugate gradients direc- 
tion is with the present band only, requiring C operations, and is not important. 

Given that there are B bands, we can see that the cost of performing a single 
conjugate gradients iteration on every band is (9(B2C) for orthogonalisation and 
O(BD log D) for fourier transforms. 

3.2. Parallelism 

We currently have access to parallel machines which deliver performance at the 
Gigaflop level, and anticipate machines delivering Teraflops before the end of 
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this decade. It would seem that a Teraflop machine must contain many, 
thousands of, nodes. Whereas such machines will probably be MIMD, the sheer 
number of nodes indicates that applications mounted on them will be data 
parallel. We therefore seek to exploit data parallelism in the above calculations. 

Special k-points. The easiest way to parallelise these computations would be to 
assign each k-point to a different node in the machine, since the calculations at 
different k-points are quite independent. Unfortunately, the number of special 
k-points in the total energy pseudopotential calculation is very small, often one, 
and independent of the size of system under study. We have not exploited this 
concurrency in our parallel program. 

Electronic bands. The next conceptual level of data parallelism is at the electronic 
band level. In this approach one divides the bands into groups and assigns each 
group to a different node within the machine, thus utilising (9(B) nodes. The 
calculation of the steepest descents vector for the band is then trivially parallel 
since each node can proceed independently. 

In order to maintain the orthogonality of the new wavefunctions, after a 
single conjugate gradient iteration is applied to every band, it would be necessary 
for the vectors ?~'~ to be orthogonal, which in turn implies that the vectors /~m 
be orthogonal to one another. This could be performed by a method such as that 
utilised by Car and Parrinello, in their molecular dynamics approach, in which 
the following algorithm would be repeatedly applied to the vectors ]~;m in 
parallel: 

1 l m  i m  t m  fl,itm = fl~m __ 2 Z (flJ [~i ) ~ j  

In this problem every node needs to access the same data stored at every other 
node. The communication pattern required for this is all-to-all global, in which 
every node sends the identical message to every other node. Notice the similarity 
with the classical n-body problem. Given N nodes, this communication takes 
(9(BC/N) time in terms of inter-node bandwidth, and (9(N) time in terms of 
communication setup. 

The number of iterations which would be required in order to mutually 
orthogonalise the r/i increases with the number of bands. For this reason, and the 
fact that the single channel bandwidth in the target machine(s) is rather small, 
we have not attempted to exploit this concurrency in our parallel program. 

Wavefunction coefficients. The finest conceptual level of data parallelism is at the 
wavefunction coefficient level. In this approach one divides the space of the 
wavefunction into a number of regions and assigns each region to a different 
node. In fact, one must assign portions of both the wavefunctions and the FFT 
mesh to nodes. One easy way to think about this is to imagine the FFT mesh as 
a cube, with a sphere in the midd l e -  the wavefunction exists on mesh points 
within the sphere. This is, of course, a simplification since the FFT mesh is not 
usually cubic, and there may be more than one k-point within the mesh. 

There is a great deal of flexibility in the manner in which the regions of the 
FFT mesh are defined and distributed over nodes, and a good division for one 
machine may well be far from optimal for another machine. Consider a 
hypothetical, although not unrealistic system, containing A ~ 250 atoms, from 
which C ~ 25 000, and D ~ 643. Given that the target machine contains 64 
nodes, the portion of a wavefunction stored at any node in this scenario is 
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C/N = 25 000/64 ~4000 coefficients. With data stored again as F O R T R A N  
COMPLEX,16,  this vector occupies about 64 kbytes. This has the consequence 
that the orthogonalisation cannot make good use of the cache. 

The vector length for the component 1D FFTs, which make up the 3D FFT, 
are only about 64. With data stored in F O R T R A N  COMPLEX,~16 data, this 
vector occupies about 1 kbyte. Therefore there is plenty of room for the vector, 
and another work vector if necessary, to be held in the cache during the 1D F F T  
calculation. In order to exploit this observation we have divided reciprocal space 
up into lines of points parallel to one of the axes (say the x-axis, since this was 
the inner loop throughout the program), and assigned distinct groups of lines to 
each node. The criteria for grouping lines were 

1. The number of lines in each group should be equal - the cube from our 
simple picture should be evenly distributed over nodes. 

2. The number of points in the FFT  mesh corresponding to wavefunction 
coefficients within each group should be as nearly equal as possible - the sphere 
from our simple picture should be evenly distributed over nodes. 

In actual fact it would be very difficult to satisfy the second of these criteria 
optimally. We have used a completely naive algorithm which we find works in a 
satisfactory manner. We firstly divide these lines into those which do contain 
wavefunction plane waves, the hard lines, and those which do not contain 
wavefunction plane waves, the easy lines. We then just hand out the lines in turn 
to the nodes, starting with the hard lines and continuing with the easy lines until 
all the lines have been assigned. In our hypothetical example system, we have 
thousands of points in any plane, and there is very little load imbalance. 

This completes the description of the manner in which the reciprocal space 
F F T  mesh and the wavefunctions were distributed over nodes. The communica- 
tion pattern required in the orthogonalisation is simply global summation of 
scalar values across all nodes. In a binary hypercube, this takes a time (9(log N) 
in terms of bandwidth and communication setup. 

Now we shall turn to the distribution of the real space F F T  mesh. Given that 
we want an equal amount  of real space to be stored at each node, there seemed 
to be an obvious way to perform the FFT  from reciprocal space to real space, 
and thus arrive at the distribution of real space. We could perform the 1D FFTs 
along x directly. We then had to rotate the data set such that lines parallel to the 
y-axis are assigned to nodes, perform the FFTs along y, rotate again so that lines 
parallel to the z-axis were assigned to nodes and perform the FFTs along the z 
direction. There are two rotations of the data set in this scheme. 

The communication pattern for this problem is all-to-all personalised, in 
which every node sends a different message to every other node. Note the 
similarity with the matrix transpose problem. Given N nodes, in a binary 
hypercube, this communication takes (9(D/N) in terms of bandwidth, and (9(N) 
in terms of communication setup. 

We can eliminate one of the communications in this 3D FFT. If  we were to 
divide up the real space FFT  mesh by assigning planes parallel to yz to nodes, 
then there is only one communication since the transposition of y and z 
dimensions can be performed locally. Of course, this introduces a load imbalance 
when the number of points along the x direction is not a multiple of N. It just 
so happens that the time wasted due to this load imbalance is less than the time 
taken to move the data around once, so we are actually using the latter 
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distribution of the real space. On a machine with better communication channels, 
we would choose the former, finer grained distribution. 

In fact, for 3 of the 6 3D FFTs we have to do, we know a priori that most 
of these x-lines are zero, transforming from reciprocal space to real space, or will 
be ignored after the reverse transform. This is because these points correspond to 
plane waves which lie outside the cut-off energy - they are not inside the sphere. 
We can save most of the communications bandwidth by not bothering sending 
the data for these lines, since the receiver knows that it will just be zero. Exploiting 
this knowledge, the distribution of real space by planes rather than lines has 
reduced the communication requirement by about a factor of five. 

3.3. Prospects for massive parallelism 

We finally wish to consider the prospects for exploitation of massive paralMism 
in this problem. 

The program we have written for the current i860 based machines is only able 
to exploit N = (9(A 1/3) nodes. It follows that the node memory must increase as 
(9(N5), so this program will soon run out of memory if we try to solve really big 
problems on really big computers. Given somewhat faster communications, the 
program could easily use N = (9(A 2/3) nodes, and a node memory increasing as 
O(N4), which is not a great deal better. 

We would really like to be able to fix the node memory, since we do not expect 
to be able to build really big machines with vast amounts of memory at each node. 
To do this, we need to use (9(A 2) nodes. We can use this many nodes, provided 
we combine the distribution of the fourier transform mesh, and wavefunction 
plane waves, with the distribution of electronic bands. 

In this case we would assign fixed size groups of band to identical groups of 
nodes. The number of nodes in each of these groups would increase as A. Each 
node within a group would then be assigned a fixed size portion of the F F T  mesh, 
which can only be done if we forget about dividing the mesh up in two dimensions 
and actually perform the transform in parallel. If we can arrange for these node 
groups to be connected together in one big ring, such that nodes are connected 
to the corresponding nodes in neighbouring groups, then the bandwidth between 
node groups increases as A, which means that the all-to-all global communication 
can be performed in time (9(BC/A) = (9(A). This is acceptable, since (_9(A) was the 
run time of a conjugate gradient iteration on all bands anyway. Unfortunately, 
we do not actually get (9(A) run time, since the time spent mutually orthogonal- 
ising the steepest descent vectors would increase faster than A. 

Once we consider actual Teraflop machines which might appear later this 
decade, the kinds of calculations which we wish to perform, and some of the 
missing constants factors in this analysis, we might well find a slowly growing node 
memory acceptable. In this case a large part of our program could be used as the 
node group engine in this scenario. We are then able to utilise N = (9(A 5/3) nodes, 
and the node memory grows as O(N1/3). 

4. Conclusion 

The total energy pseudopotential method is highly concurrent. In this paper we 
have briefly described the utilisation of a conjugate gradient method for minimi- 
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sation of the Kohn-Sham energy functional, and discussed the execution of this 
method on message passing MIMD machines. 

A serial FORTRAN program has been adapted to run in parallel on the i860 
based Meiko Computing Surface and the Intel iPSC/860 computers, using a data 
parallel approach. We found that an effective distribution of the key data 
structures, i.e. the fourier transform mesh and the electronic wavefunctions, 
depends on the performance characteristics of the target machine, which high- 
lights the requirement for performance modelling and machine characterisation. 

Finally we discussed the prospects for exploitation of massive parallelism in 
these algorithms. This was certainly found to be possible, and perhaps without 
major modifications of existing codes. However, global communication patterns 
are an important part of the parallel program. In order to proceed in this 
direction, it will be necessary for prospective massively parallel machines to 
support very high throughput in global communications. 
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